Natural language processing and SMASH method for capturing and standardising unstructured nursing activities in a hospital setting: a retrospective study
2.21.8 - Revisione, aggiornamento e valutazione del Professional Assessment Instrument (Version 3.0)
Autori
Abstract
Background
Nurses record data in electronic health records (EHRs) using different terminologies and coding systems. The purpose of this study was to identify unstructured free-text nursing activities recorded by nurses in EHRs with natural language processing (NLP) techniques and to map these nursing activities into standard nursing activities using the SMASH method.
Study design
A retrospective study using NLP techniques with a unidirectional mapping strategy called SMASH.
Methods
The unstructured free-text nursing activities recorded in the Medicine, Neurology and Gastroenterology inpatient units of the Agostino Gemelli IRCCS University Hospital Foundation, Rome, Italy were collected for 6 months in 2018. Data were analyzed by three phases: a) text summarization component with NLP techniques, b) a consensus analysis by four experts to detect the category of word stems, and c) cross-mapping with SMASH. The SMASH method calculated the string comparison, similarity and distance of words through the Levenshtein distance (LD), Jaro-Winker distance and the cross-mapping's cut-offs: map [0.80-1.00] with < 13 LD, partial-map [0.50-0.79] with <13 LD and no map [0.0-0.49] with >13 LD.
Results
During the study period, 491 patient records were assessed. 548 different unstructured free-text nursing activities were recorded by nurses. 451 unstructured free-text nursing activities (82.3%) were mapped to standard PAI nursing activities, 47 (8.7%) were partial mapped, while 50 (9.0%) were not mapped. This automated mapping yielded recall of 0.95%, precision of 0.94%, accuracy of 0.91%, F-measure of 0.96. The F-measure indicates good reliability of this automated procedure in cross-mapping.
Conclusions
Lexical similarities between unstructured free-text nursing activities and standard nursing activities were found, NLP with the SMASH method is a feasible approach to extract data related to nursing concepts that are not recorded through structured data entry.
Keywords
Cross-mapping; clinical nursing information system; natural language processing; nursing activities; professional assessment instrument; standardized nursing terminology.